
Extensional and Flexural Waves in a Thin-Walled Graphite/Epoxy

Tube*

William H. Prosser

NASA Langley Research Center 

Hampton, VA 23665

Michael R. Gorman

Aeronautics and Astronautics 

Naval Postgraduate School

Monterey, CA 93943

John Dorighi**

NASA Langley Research Center 

Hampton, VA 23665

Journal of Composite Materials

Vol. 26(14), 1992, pp. 418-427

Abstract

Simulated acoustic emission signals were induced in a thin-

walled graphite/epoxy tube by means of lead breaks (Hsu-Neilsen

source).  The tube is of similar material and layup to be used by

NASA in fabricating the struts of Space Station Freedom.  The

resulting waveforms were detected by broad band ultrasonic

transducers and digitized.  Measurements of the velocities of the

extensional and flexural modes were made for propagation

directions along the tube axis (0 degrees), around the tube

circumference (90 degrees) and at an angle of 45 degrees.  These

velocities were found to be in agreement with classical plate

theory.    
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** Mechanical Engineering student, University of Colorado,

Boulder, CO 80309-0427



Introduction

Graphite/epoxy composites, because of their high strength, high

stiffness, and  light weight, have been chosen for fabrication of

the strut tubes of Space Station Freedom (SSF).  While exposed to

the harsh environment of space, these tubes will be subjected to

hypervelocity micrometeriod impacts and large thermal cycling,

among other things.  Thus, some method of monitoring these tubes

is needed while SSF is in orbit.  Other critical parts which need

to be monitored include the various fiber wrapped pressure vessels

used for life support and fuel containment purposes.  

Acoustic emission (AE) testing has been proposed as a technique

for nondestructively monitoring these structures.  The global

monitoring capability of AE makes it well suited for this purpose.

However, much information about the generation and propagation of

acoustic emission signals in composites and composite tubes is

needed before AE techniques can yield useful quantitative

information.

Gorman and Ziola [1] demonstrated that simulated AE signals in

flat composite plates consist of the lowest order Lamb modes.

These modes are often referred to as plate modes.  The lowest

order symmetric mode reduces to what is called the extensional

mode in plate theory,  while the lowest order anti-symmetric mode

reduces to the flexural mode; these terms apply when the plate is

thin, that is, the wavelength is much greater than the thickness.

The signals were generated by pencil lead breaks (also known as

Hsu-Neilsen sources).  Gorman and Ziola [1] further showed that

real AE signals generated by transverse matrix cracking in a

composite propagate as plate modes.  

The propagation of Lamb and plate modes in composite plates has

been studied by numerous investigators.  Noiret and Roget [2]

investigated the case of long wavelength and low frequencies.

Chimenti and Nayfeh [3, 4] have extensively studied Lamb mode

propagation for ultrasonic materials characterization

measurements. Veidt and Sayir [5] also characterized the material



properties by measuring the flexural plate mode velocity.

Stiffler and Henneke [6] investigated plate modes in an attempt to

better understand the acousto-ultrasonic technique.  A number of

investigators have studied plate waves generated by the impact of

a composite including Moon [7], Chow [8], Sun and Lai [9], and

Rose and Mortimer [10].  

With the exception of the study by Rose and Mortimer [10] who

also studied composite shells or tubes, the previous research has

all focussed on the simple geometry of a flat plate.  The majority

of practical structures, such as the strut tubes studied in this

research, are of more complicated geometries.  This research

demonstrates, however, that AE signals propagate in these thin-

walled tubes as plate waves and that classical plate theory is

adequate for the prediction of their propagation velocities.

Gorman and Ziola [1] further pointed out that an understanding

of the propagation of plate modes with different velocities is

needed to improve the location capability of AE techniques. They

also investigated the effect of source orientation by breaking

pencil leads on the surface and on the edge of the plate.  An

interesting feature of these plate modes was that the amplitude of

the displacement components of the different modes was dependent

on the source orientation for the simulated AE sources.  For the

composite plates, if the lead was broken on the surface, the

resulting waveform had a large out-of-plane component for the

flexural mode and a much smaller out-of-plane component for the

extensional mode.  For lead breaks on the edge of the plate, the

out-of-plane component of the extensional mode was much larger

than that of the flexural mode.  Gorman [11] showed similar

results on aluminum plates for surface and edge breaks.  

Gorman and Prosser [12] additionally demonstrated that the

amplitudes of the displacement components of the extensional and

flexural modes were dependent on source orientation for

intermediate angles on aluminum plates.  This was accomplished by

machining angled slots into the plate on which the lead was

broken.  This feature of plate waves may be useful in determining

the type of source and its orientation for actual AE signals.  For



example, the observed out-of-plane displacement components of

plate waves due to transverse matrix cracking in the work of

Gorman and Ziola [1] had extensional amplitudes which were much

larger than the flexural.  This makes sense since transverse

matrix cracking should produce a source motion in the plane of the

plate generating a larger extensional wave.

In this research, the out-of-plane components of AE signals

produced by lead breaks on a graphite/epoxy tube of dimensions and

design to be used on SSF were measured using broad band

transducers.  The signals were shown to consist of plate modes.

The amplitudes of the modes were again shown to be affected by

source orientation by creating lead breaks on the edge as well as

the surface of the tube.  Since the specimen being tested is

actually a tube geometry, the plate wave predictions are only an

approximation.  However good agreement might be expected at the

frequencies measured since the wavelengths are smaller than the

radius of curvature.  Measurements of the velocities of both modes

were made for propagation along the tube (0 degrees), around the

tube circumference (90 degrees), and at 45 degrees.  These

velocities were then compared with velocities predicted from

classical plated theory using stiffness coefficients predicted by

laminated plate theory and good agreement was demonstrated.

Theory

Classical plate theory predicts three modes of propagation in a

plate [13]. These are called the extensional, the in-plane shear

and the flexural modes.  This theory is based on the assumption of

plane stress in a thin plate where the wavelength is large in

comparison with the plate thickness.  The in-plane shear mode is

not detectable when using a transducer which is sensitive to out-

of-plane displacement and is mounted on one of the faces of the

plate.  Thus, it was not observed previously by Gorman and Ziola

[1] and has not been detected in this research.  Therefore, the

theoretical treatment of this mode is not presented here. 



While classical theory predicts only an in-plane displacement

component for the extensional mode, higher order theories predict

[14, 15] and experimental measurements verify the existence of an

out-of-plane displacement component for this mode.  This out-of-

plane component is due to the Poisson effect from the in-plane

motion and thus propagates at the same velocity.  In a homogeneous

isotropic material the extensional mode propagates with a velocity

ce which is dispersionless:

ce = E
r(1-n2)

                           (1)

where E is the Young's modulus, n is Poisson's ratio, and r is the

density.

In anisotropic composite materials the extensional velocity is

dependent on the in-plane stiffness coefficients Aij, i, j = 1, 2,

and 6 in the usual contracted notation.  These are referred to the

laminate axes, x and y, which are in the plane of the plate.  The

Aij are defined as

Aij = Qij
(k) dz

z = - h

2

z = h

2
                               (2)

where h is the thickness of the laminate, z is the distance in the

thickness direction from the midplane of the laminate, and Qij
(k) are

the lamina stiffness coefficients for the kth lamina of the

composite.  For a +/- angle-ply symmetric laminate, only four of

the in-plane stiffness coefficients are non-zero. These are A11,

A12, A22, and A66.  The equations of motion for the in-plane

displacements for a material with this symmetry are given by

Whitney [16] as
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where u is the displacement in the x direction and v is the

displacement in the y direction.  

These equations govern the propagation of the extensional and

the in-plane shear modes.  Except along symmetry directions of the

composite, neither mode will be pure extensional or pure shear.

Instead, they will be quasi-extensional or quasi-shear modes.  The

mode with its largest component of particle displacement in the

direction of propagation is the quasi-extensional mode.  

The dispersion behavior of the in-plane modes is obtained by

substituting the displacements for a plane wave propagating in an

arbitrary direction into the equations of motion.  The

displacements are

u = A0axei(wt - klxx - klyy)                        (5)

and

v = A0ayei(wt - klxx - klyy)                        (6)

where A0 is the amplitude, ai are the direction cosines of the

particle displacements, w is the angular frequency, k is the

wavenumber, and li are the direction cosines of the wave normal.

Substitution of the displacements and reducing terms yields

A11lx
2 + A66ly

2 - rhc2 (A12 + A66)lxly

(A12 + A66)lxly A66lx
2 + A22ly

2 - rhc2
 ax
ay

 = 0         (7)



where c is the phase velocity and is equal to w/k.  The nontrivial

solution for this equation occurs when the determinant of the

coefficients is equal to zero which yields a quadratic in rhc2.

The solution which predicts the faster velocity is that for the

quasi-extensional mode.   

For propagation along the x axis, the extensional mode is a pure

mode wave and its velocity is given by

ce = 
A11
 

rh
  .                            (8)

The extensional mode is also pure mode for propagation along the y

direction with the velocity given by

ce = 
A22
 

rh
 .                              (9)

For propagation at 45 degrees between the x and y axes, the

solution yields a quasi-extensional mode with a velocity given by

ce = 
(A11 + 2A66 + A22 + R

4rh
                      (10)

where

 

R = (A11 + 2A66 + A22)
2 - 4(A11 + A66)(A22 + A66) + 4(A12 + A66)

2   (11)

The second mode of propagation is the flexural mode.  For

isotropic materials, this mode has a velocity cf which is given by

cf = D
rh

4

 w                                  (12)

where D is the bending stiffness defined by



D = Eh3

12(1-n2)
                               (13)

and w is the frequency in radians/sec.  This mode is dispersive

with the higher frequencies traveling at higher velocities.   

For laminated composite materials, the flexural velocity is a

function of the bending stiffness coefficients (Dij).  These are

defined as

Dij = Qij
(k) z2 dz

z = - h

2

z = h

2
   .                        (14)

In a symmetric angle-ply composite, the six coefficients D11, D12,

D16, D22, D26, and D66 are nonzero.  The equation of motion is

given by
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                (15)

where w is the out-of-plane displacement.  The dispersion relation

is again obtained by assuming a plane wave of the form

w = A0ei(wt - klxx - klyy) .                         (16)

Again, the velocity is dispersive and is dependent on the

propagation direction.  It is given by

cf = 
D11
'

rh

4

 w                                (17)

where



D11
'  = D11lx

4 + D22ly
4 + 2D12lx

2ly
2 + 4D66lx

2ly
2 + 4D16lx

3ly + 4D26lxly
3      (18)

 

Experiment

The tube studied in this research was AS4/976 graphite/epoxy

with a laminate stacking sequence of [+/-10, +/-30, +/-10]s .  The

tube had dimensions of 4.5 meters in length, 0.0508 m. in inner

diameter, and 0.0035 m. in wall thickness.

Pencil lead breaks were used to simulate acoustic emission

signals in the tube.  The waves were detected using a 3.5 MHz

ultrasonic transducer (Panametrics) with a diameter of 1.27 cm.

This transducer was used because of its flat frequency response in

the 20 to 500 kHz bandwidth of the observed signals.  The detected

signals were amplified and filtered with a preamplifier (Physical

Acoustics Corporation 1220A) which had a 20 kHz high pass filter.

The signals were then digitized by a transient recorder (LeCroy

6810) operating at a 5 MHz sampling rate with a 12 bit vertical

resolution.  The digitized signals were stored on a computer for

later analysis.  Figure 1 shows a block diagram of the

experimental setup.  A typical waveform at a source to receiver

distance of 0.1524 m. is shown in Figure 2 wherein the extensional

and flexural waveform components are identified.  The waveforms at

other source to receiver distances are similar with the

extensional mode arriving earlier because of its faster velocity.

The time between the extensional and flexural mode arrivals

increases with increasing distance of propagation because of the

slower velocity of the flexural mode.

Measurements of the extensional and flexural velocities were

made along the tube axis (0 degrees or x-direction), around the

tube circumference (90 degrees or y-direction), and at an angle of

45 degrees to the axis of the tube.  For measurement of the

velocity along a given direction, the transient recorder was

triggered by a sensor placed next to the source and the arrival



times of the extensional and flexural modes were recorded for a

given distance of propagation.  The receiving transducer was then

moved by a preselected distance along the desired propagation

direction and the lead break repeated.  Four to six points data

were taken for each mode and direction of propagation.  The values

of arrival time were then plotted against the trigger sensor to

receiving sensor separation.  A linear least squares fit was

applied to the data and the slope was taken to be the velocity.

For the extensional wave, the earliest detected zero crossing

was used for the arrival time.  However, because the flexural mode

is dispersive, the arrival time must be measured at a particular

frequency to allow a comparison with theory.  In addition,

classical plate theory agrees with exact theory only at low

frequencies.  The lowest frequency in the data which was

unperturbed by refections was at about 50 kHz.  As a rough

measurement of the arrival time of this frequency, the time for

the arrival of the portion of the wave with a half cycle time of

10 msec. was used. This was used to compute the velocity.

Signals were also obtained when the pencil lead was broken on

the end of the tube.  In this case the source motion was primarily

in-plane.  This was done so that the out-of-plane displacement

components of the extensional and flexural motion could be

compared with those where the source motion was normal to the

plane (surface breaks).

 

Results and Discussion

Table 1 shows the material properties of the lamina obtained

from the manufacturer's data sheet.  Also in Table 1 are the

laminated plate theory calculations for the in-plane and bending

stiffness coefficients for a laminated plate with the same

stacking sequence as that of the tube.  

The theoretical extensional and flexural velocity predictions

are given in Table 2 for the three different directions of



propagation.  Because of the dispersive nature of the flexural

mode, its velocity prediction is expressed in terms of the

frequency of the wave.   

The arrival time versus distance plot for extensional waves

propagating along the 0 degree direction is shown in Figure 3.

The dotted line is a least squares fit to the data.  The

experimentally measured velocity values are also presented in

Table 2.  The arrival time versus distance plot for the 0 degree

direction of the 50 kHz component of the flexural wave is

presented in Figure 4.  A least squares fit is indicated by the

dotted line.  The theoretical velocity at this frequency and the

experimental values are also given in Table 2.  Good agreement was

obtained between theory and experiment except for the 45 degree

extensional mode and the 90 degree flexural mode, which need

further investigation.  

A waveform due to a lead break on the edge of the tube is

presented in Figure 5.  A comparison with Figure 2, which shows a

waveform for an identical distance of propagation but with the

lead break on the surface of the tube, demonstrates the effect of

source orientation on the amplitudes of the plate waves.  The edge

break produces an extensional wave with a large out-of-plane

displacement component.  The surface break also produces a large

out-of-plane displacement component, but in the flexural mode.  As

discussed previously, this fact may be useful in obtaining source

information for actual sources in composites.
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Table 1.  Properties of AS4/976 Single Lamina and Laminated Plate.

Single Lamina

AS4/976 (Fiberite)

Ex (GPa) Ey(GPa) Es(GPa) nx ny r (Kg/m3)

147.6 9.65 3.2 0.30 0.02 1560

Laminated Plate Stiffness

[+/-10, +/-30, +/-10]s

Laminate thickness h = 3.528x10-3 m

In-plane stiffness (MPa-m)

A11 A22 A12 A66
433 44.6 50.8 51.6

Bending stiffness (Pa-m3)

D11 D22 D12 D66 D16 D26
463 43.9 46.7 47.6 27.9 4.96



Table 2.  Theoretical and Experimental Plate Wave Velocities

Extensional Waves

Angle Theoretical ce Experimental ce
(degrees) (km/s) (km/s)

0 8.87 8.89

45 5.97 4.13

90 2.85 3.12

Flexural Waves

Angle Theoretical cf dispersion relation

(degrees)    (m/s) (f = frequency in Hz)

0           7.61 (f)1/2

45           6.67 (f)1/2

90           4.22 (f)1/2

Angle Theoretical cf Experimental cf
(degrees) (km/s at 50 kHz) (km/s at 50 kHz)

0 1.70 1.82

45 1.49 1.46

90 0.94 1.41
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Figure 1.  Experimental setup.
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Figure 2.  Typical waveform detected on graphite/epoxy tube from

lead break source on surface of tube.  Source to receive distance

is 0.1524 meters.
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Figure 3.  Arrival time of extensional wave versus distance of

propagation.  Dashed line is least-squares fit used to obtain

velocity.



0

0.05

0.1

0.15

0.2

0 2.500 10-5 5.000 10-5 7.500 10-5 1.000 10-4

D
I
S
T
A
N
C
E
 
(
M
E
T
E
R
S
)

FLEXURAL ARRIVAL TIME (SEC.)

Figure 4.  Arrival time of 50 kHz component of flexural wave

versus distance of propagation.  Dashed line is least-squares fit

used to obtain velocity.
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Figure 5.  Waveform from lead break on end of tube.  Source to

receiver distance is 0.1524 meters.

 


